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This paper analyzes a near-continuum compressible magneto-gas-dynamic flow inside a two-dimensional

microchannel or a two-dimensional channel of conventional dimensions, with a low-magnetic-Reynolds-number

assumption. This work represents an extension from the classical Hartmann flow in a two-dimensional channel of

infinite length to a microchannel of finite length. First, by comparing the magnitudes of different forces in the

compressible gas flow, we obtain a nondimensional X momentum equation that relates the pressure ratio, Reynolds

number, Mach number, magnetic Reynolds number, and magnetic force number. Second, for two cases of selected

nondimensional parameters of comparable magnitude, we solve for asymptotic solutions of velocities, pressure,

temperature, and mass flow rate of compressible gas flow based on the velocity-slip and temperature-jump wall

boundary conditions while maintaining a consistent quasi-isothermal assumption. It is found that even with a small

magnetic Reynolds number, the electric and magnetic field effects on the flow properties can be significant.

Numerical solutions of the same formulation are obtained for validation of the present analytical solutions. The

major work in this study is theoretical and the solutions are obtained in closed forms that can provide physical

insights into flows inside a microchannel or a channel of conventional dimensions.

Nomenclature

B = magnetic field strength
D = atomic diameter
d = channel semiheight
E = electric field strength
Ha = Hartmann number,

�����������������
ReR�Rb
p

K = �E=�uoB0�
Kn = Knudsen number
k = Boltzmann constant, or thermal conductivity

coefficient
L = channel length
Ma = Mach number based on averaged properties at the

outlet, uo=
������������
�RTo
p

n = number density
P = inlet and outlet pressure ratio, pi=po
Pr = Prandtl number
p = pressure
Q = mass flow rate or magnetic interaction factor, R�Rb
R = universal gas constant
Re = Reynolds number based on averaged properties at the

outlet, �ouo�2d�=�
Rb = magnetic force number, B2

0=��oU2
o�m�

R� = magnetic Reynolds number, �2d�Uo�o�o
T = temperature
U = average velocity
u, v, w = velocity components
� = height-to-length ratio, 2d=L

� = specific heat ratio
� = mean free path
� = gas viscosity
�m = magnetic permeability
� = density
� = electric conductivity
�T = energy accommodation coefficient
�u = momentum accommodation coefficient
�T = coefficient, �2 � �T�=�T
�u = coefficient, �2 � �u�=�u

Subscripts

i, o = averaged inlet and outlet properties
w = wall property

I. Introduction

M ICROCHANNELS are important components for many
microelectromechanical systems, and it has been an

interesting research topic to study gaseous flows inside micro-
channels. In the literature, there are many reports about gas flows in
microchannels and microtubes [1–5]. A microchannel for fuel cells,
for example, is of the dimensions of micrometers, whereas a channel
of conventional dimensions is on the order of centimeters to meters.
It is well accepted that for near-continuum gas flows through
microchannels, the Navier–Stokes equations are valid if a slip wall
boundary condition is used. Many researchers have obtained
theoretical solutions for the flow distributions along a microchannel
with an isothermal assumption: for example, the pioneering work by
Arkilic et al. [5], Karniadakis and Beskok [6], and Zohar et al. [7].
Numerically, there are many simulations of compressible flows in a
microchannel as well: for example, with the direct simulation
Monte Carlo method [8–10], the information-preservation method
[11,12], the direct methods for solving the Boltzmann equation [13],
the method on the basis of the linearized Boltzmann equations [14],
and gas-kinetic Bhatnagar–Gross–Krook–Burnett equation solu-
tions [15]. Discussions of thermal heating effects are reported as well
[16–20]. Extensive studies have also been carried out on electro-
osmotic flows [21] in microchannels in the presence of a pressure
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gradient and an electric field. For example, there are studies on a
single conducting fluid with zeta potentials at the channel walls [22–
26] and two immiscible fluids in a microchannel [27,28].

One important and interesting problem related to gaseous flow
inside a microchannel is conductive gas flows under the influence of
external magnetic and electric fields or magneto-gas-dynamic
(MGD) flows. The magnetic and electric fields can significantly
affect the flowfield inside a channel, whereas different placements of
electric field enable the channel to perform as a generator, a pump, a
flux meter, or an accelerator [29].

We present a study of rarefied gas flow in microchannels with
MGDeffects. It is an extension of the classical Hartmann flow [29] to
a flow in amicrochannel of finite length, which could be a continuum
or a rarefied gas with a set of general velocity-slip and temperature-
jump wall boundary conditions. Gas flow in a channel of
conventional dimensions with the same dimension ratio is a special
case of such microchannel flows, but with nonslip and constant-
temperature wall boundary conditions. Thus, the microchannel flow
solutions can revert to those for gas flows inside channels of
conventional dimensions. However, this problem differs from the
Hartmann flow problem in several aspects. First, for pressure-driven
gas flows inside a microchannel, there are usually large density
changes inside the microchannel, and the average velocity cannot
remain unchanged to maintain a constant mass flow rate. Hence, the
invariant-velocity profile fromHartmann flowdoes not exactly apply
here. Second, the boundary conditions are different. For Hartmann
flow, there is essentially no variation in the flow direction; wall
boundary conditions are nonslip and constant temperature, and at the
inlet and outlet, one can use periodic boundary conditions (except for
pressure). However, for microchannel flows with density variations
and rarefication effects, wewill not use periodic boundary conditions
at the inlet and outlet; further, we will specify a set of general
velocity-slip and temperature-jumpwall boundary conditions, which
include the continuum nonslip and temperature boundary conditions
as a special case. Third, the pressure gradient inside a microchannel
of finite length is not assumed to be constant throughout. Simply
taking a linear pressure distribution assumption (after the Hartmann
flow) for the present microchannel flow will result in solution
inaccuracy. Nonetheless, the present microchannel approach
tolerates these differences; we will show that our microchannel
solutions are indeed related to the Hartmann flow solutions.

The work in this paper is a natural extension from two previous
works. The work of Arkilic et al. [5] provided detailed steps to obtain
a set of asymptotic solutions for neutral (non-MGD)gas flows inside
amicrochannel with an isothermal assumption. Thework of Cai et al.
[20] provided some further improvements on such neutral-gas flows,
including estimations for orders of magnitude for the Reynolds and
Mach numbers, a quasi-isothermal assumption, a temperature
solution, and solutions for gas flow inside a circular microtube.
Along the same vein, the present study follows Cai et al.’s [20]
previous approach for treatments of microchannel MGD flows. A
few works appeared in recent years in the same area of MGD
microchannel flow [30,31]. We note the differences between the
present approach and others in the following aspects:

1)Our study includes a governing equation for temperature, which
is necessary for this study due to the Joule heating effects, and we
obtain the temperature field based on the quasi-isothermal
assumption [20]; by comparison, the past work neglects the energy
equation and adopts the isothermal assumption.

2)We explicitly use the low-magnetic-Reynolds-number assump-
tion, which is crucial to simplify the MGD equations, and we have
not noticed any previous treatment for the same problem in the
literature. Without this assumption, the magnetic field variations in
general should be considered; thus, it is unlikely that such an
asymptotic approach can be consistently formulated and that its
solutions can be so obtained.

3) According to our X momentum equation, we provide the gov-
erning relation between the Re and Ma numbers and two other
nondimensional parameters for magnetic and electric fields.We then
conducted a consistent order-of-magnitude analysis on a treatment of
theXmomentum equation, yielding a class of physically meaningful

asymptotic solutions. This unique treatment is essential, for it is a
crucial step leading to the simplification of the valid MGD
microchannel equations adopted presently.

4) We have obtained velocity components U and V, temperature,
and pressure distributions in a microchannel MGD flow as a part of
the total asymptotic solutions. Our formulation is largely different
from the previous U-velocity solution formulation. The nonlinear
pressure solution implies that the solution for U velocity would be
incorrect without it. This is because the nonlinear pressure gradient is
interactively coupled in the equations with velocity components and
temperature. It is inappropriate to arbitrarily assume a linear pressure
distribution throughout the channel or to substitute numerical
nonlinear pressure distribution in the equations for asymptotic
solutions.

We remark that (based on points 2 and 3) our solutions for MGD
microchannel flow are limited to low magnetic Reynolds numbers,
whereas they are invalid with very large Hartmann numbers. This is
because an MGD flow with large Hartmann numbers will likely
result in strong Joule heating, thus defying the quasi-isothermal flow
assumption. Therefore, one questions if it is physically justifiable in a
previous work to adopt a large-Hartmann-number flow case for
validation of an isothermal-based U-velocity result. Clearly, the
difference between our previous work [20] and the present work is
the MGD consideration and its low-magnetic-Reynolds-number
assumption. With this assumption, the MGD equations revert to
Navier–Stokes equationswith two extra source terms, accounting for
the effects from the electric and magnetic fields. Essentially, this
assumption releases one from the heavy burden of solving the
magnetic field equations. In so doing, we worked out the present
MGD flow solutions in microchannels for small Hartmann numbers,
consistent with the quasi-isothermal assumption, and supported by
combined external electric and magnetic fields.

This paper is organized as follows: Section II presents the
problem, the assumptions used in this study, and the governing
equations. Section III estimates the orders of magnitude for different
forces in the flowfield. Section IV provides a set of asymptotic
solutions to this problem. Section V presents numerical simulation
results to validate the asymptotic solutions. Section VI presents
conclusions.

II. Problem Description and Governing Equations

As illustrated by Fig. 1, a microchannel has a height of 2d and a
length ofL, and the average compressible gas properties of pressure,
density, velocity, and number density are po, �o, Uo, and no at the
channel outlet. The averaged outlet quantities are adopted to
normalize the following governing equations and boundary
conditions. The inlet pressure is several times larger than the outlet
pressure, and the pressure ratio is denoted asP. The coordinate origin
is set at the inlet center point, the X axis is along the channel
centerline, and the Y axis is along the direction normal to the channel
wall.

Assumptions used in this study are as follows:
1) The external magnetic field is fixed at a value B0 along the Y

direction only.
2) The flow is not isothermal, but can be well approximated with a

quasi-isothermal assumption [20]. IfP is not very large and the Joule
heating effects are not strong, this assumption is reasonable.

Fig. 1 Illustration of the problem, B� �0;B0; 0� and E� �0; 0;Ez�.
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3) Directly based on the preceding assumption, gas viscosity �,
thermal conductivity k, magnetic permeability �m, and electric
conductivity � are treated as constants.

4) The magnetic Reynolds number R� � �2d�Uo�o� is very
small. It renders a negligible induced magnetic field Bx when
compared with the external magnetic field B0.

5) The flow is two-dimensional; hence, @=@z� 0 and w� 0.
6) The constant external electric field is along theZ direction only,

and Ex � Ey � 0. Further, we assume that the electric field is linked
with the magnetic field with Ez ��KuoB0, and 0<K < 1 [32].
Hence, in the next section, to estimate orders of magnitude for
different forces, we can combine the electric field into the magnetic
field.

7) The channel is not short, which means that �� 2d=L is small.
We use this small parameter � to proceed with the analysis.

The corresponding MGD equations for two-dimensional, steady,
compressible gas flows with a low magnetic Reynolds number
degenerate to the Navier–Stokes equations with two extra source
terms [32]:

@��u�
@x
� @��v�

@y
� 0 (1)

@��u2 � p�
@x

� @��uv�
@y

� @�xx
@x
�
@�xy
@y
� �B0�Ez � uB0� (2)

@��uv�
@x

� @��v
2 � p�
@y

�
@�yx
@x
�
@�yy
@y

(3)

@

@x

�
�pu

� � 1
� ��u

2 � v2�u
2

�
� @

@y

�
�pv

� � 1
� ��u

2 � v2�v
2

�

� @

@x
�u�xx � v�xy� �

@

@y
�u�xy � v�yy�

� k
�
@2T

@x2
� @

2T

@y2

�
� �Ez�Ez � uB0� (4)

p� �RT (5)

where

�xx �
2

3
�

�
2
@u

@x
� @v
@y

�

�xy � �yx � �
�
@u

@y
� @v
@x

�

and

�yy �
2

3
�

�
2
@v

@y
� @u
@x

�

and assumptions Ex � Ey � Bx � Bz � 0 are used to obtain the
preceding simplified equations.Ez is generally not zero, andBx is the
induced magnetic field in which variable jBxj � jB0j. The low-
magnetic-Reynolds-number assumption renders the preceding
simplified equations variable. Otherwise, a full group of MGD
equations, including one continuity equation, three momentum
equations, one energy equation, one equation of state, and three
magnetic field equations must be used [30,33].

In this study, we consider the velocity-slip and temperature-jump
wall boundary conditions [34]:

uw�x;y��
2� �u
�u

��x;y�
�
du

dn

�
w

� 3

4

�

�Tw

�
@T

@x

�
w

; y��d (6)

Tw�x; y� �
2 � �T
�T

2�

Pr�� � 1���x; y�
�
dT

dn

�
w

; y��d (7)

where �� 1=�
���
2
p
�D2n�x; y�� is the local molecule mean free path;

D andn are the atomic diameter and number density, respectively; �u
is the momentum accommodation coefficient; �T is the energy
accommodation coefficient; and Pr is the Prandtl number.

III. Order Estimations

As we will see in the next section, a proper order estimation for
several nondimensional parameters is crucial to simplify the
governing equations. Hence, before we proceed to simplify the
equations, we need to first estimate the orders of magnitude for
several nondimensional parameters, including Mach number
Ma�Uo=

������������
�RTo
p

, Reynolds numberRe� �2d��oUo=�, magnetic
force number Rb � B2

0=��oU2
o�m�, magnetic Reynolds number

Re� � �2d�Uo�o�o, Knudsen number

Kn� �

2d
�

�������
��

2

r
Ma

Re

and Hartmann number Ha�
�����������������
ReR�Rb
p

. These nondimensional
numbers are based on the quantities at the outlet and the external
magnetic field.

Similar to our previous study [20], by choosing the whole flow
domain as an integral domain and exercising the X momentum
equation globally, we obtain

2d�Po � Pi � �oU2
o � �iU2

i �

� �Ui �Uo
2d

2L� �B0

�
Ez �

Uo �Ui
2

B0

�
2dL

Further, because the average inlet speedUi is generallymuch smaller
than the average outlet speedUo for a pressure-driven gasflow inside
amicrochannel, those termswithUi are dropped. Then the following
simple relation can be obtained:

��1� 1=��Ma2��1 � 1=P�� � 1=Re� R�Rb (8)

where P� pi=po and �� 2d=L. The parameter K, which is a key
physical factor for the microchannel flow, presenting the ratio
between the electric field to the magnetic field. Here, it is considered
to be the same order or less than the magnetic field effects, and it is
combined into the factor R�Rb.

This simple relation [Eq. (8)] contains four nontrivial terms:
1) Themomentum change term is represented by � on the left-hand

side.
2) The pressure drop term applying at the channel inlet and outlet is

�=��Ma2��1 � 1=P� on the left-hand side.
3) The viscous force along the wall surfaces is 1=Re on the right-

hand side.
4) The magnetic/electric force applies to the whole domain R�Rb

on the right-hand side.
There are many choices to balance these terms: all terms can share

the same order of magnitudes; three terms share the same larger
order, whereas the other term is smaller; two of the four terms are
larger, whereas the other two terms are equally smaller; or two of the
four terms are large, one term is relatively small, and the other term is
the smallest. Hence, from the preceding four permutations, there will
be at least

1� C3
4 � C2

4C
2
2 � C2

4C
1
2 � 23

classes of combinations, and most of these combinations can have
many detailed subclasses as well. Here, we are interested in
investigating the interactions among viscous stress, pressure drop,
and magnetic/electric field effects. Different parameter orders may
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result in different simplified governing equations and different flow
solutions, including hypersonic, supersonic, and transonic flows, as
we illustrated in our previous paper [20].

Of the numerous possible parameter combinations, in this study,
we are specially interested in slow MGD flows under the effects of
strong pressure difference, strong viscous effects along the channel
wall, and strong MGD force. It is well known that the external
magnetic and electric fields change the velocity profile inside the
channel and that there is a thin Hartmann layer next to the wall. We
assume that the momentum gain term at the outlet is relatively small
when compared with the other three terms. This assumption is
reasonable, because in the limiting case of an exact Hartmann flow,
the velocity profile remains unchanged and the momentum change
term is zero. In this study, we select two viable cases with the
following parameter combinations, which satisfy Eq. (8):

1) Case 1 is Re� �, Ma� �, Kn� 1, Rb � 1=�2, R� � �, and
Ha � 1.

2) Case 2 is Re� 1, Ma� �1=2, Kn� �1=2, Rb � 1=�, R� � �,
and Ha � 1.

In our previous study [20], we showed that theReynolds andMach
numbers in these two cases render a balance between the viscous
effects and the pressure drop term. We intend to set R� at least one
order smaller than Rb to create a very small induced magnetic field,
but the magnetic interaction factor Q� R�Rb is assumed to be as
strong as the terms for viscous force and pressure drop.

IV. Asymptotic Solutions

In this study, the flow quantities are normalized with the averaged
properties at the outlet, and the X and Y coordinates are normalized
with L and 2d, respectively [5,20]. For the rest of the paper, it is
assumed that the coordinates and properties are nondimensional,
unless we clearly state otherwise.

With the two sets of parameters previously selected, the
nondimensional normalized governing equations and boundary
conditions are

�
@��u�
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� @��v�

@y
� 0 (9)
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� 1

3
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@2v

@x@y

�
�Q�K � u� (10)
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� 4
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�
v
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@2T

@x2
� @

2T

@y2

�
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Re

	
�
2

�
@u

@x

�
2

�2 � 2

�
@v

@y

�
2

�
�
�
@v

@x
� @u
@y

�
2

� 2

3

�
@u

@x
�� @v

@y

�
2
�
�QK�K � u� (12)

p� �T � nT (13)

u1�x; y�jy��1=2 ��uKn�x�jy��1=2
@u1�x; y�
@n

����
y��1=2

(14)

Tjy��1=2 � Tw ��T

2�

Pr�� � 1�Kn�x�
�
@T

@n

�
y��1=2

(15)

where the relations jvj< juj and jBxj � jB0j are used to simplify the
source terms in the momentum and energy equations �u � �2 �
�u�=�u and �T � �2 � �T�=�T . In Eq. (14) for the nondimensional
velocity boundary condition, the temperature gradient term is
omitted because it is relatively smaller than the velocity gradient term
for the two specific groups of nondimensional parameters.

Further, we assume the following series expansions:

u�u1� �u2� 
 
 
 v� v1� �v2� 
 
 
 p�p1� �p2� 
 
 

���1� ��2� 
 
 
 n�n1� �n2� 
 
 
 T� 1� �T2� 
 
 


The last expression implies a quasi-isothermal assumption [20],
which is based on the fact that if the flow speed inside the
microchannel is not large, then the temperature variations should be
small. This assumption leads to the temperature-field solution.
Especially, from

p�x; y� � ��x; y��1� �T2�x; y��

we obtain p1 � �1 as the zero-order relation, and the isothermal
assumption proposed by Arkilic et al. [5] is relaxed.

For the two sets of parameters, the Y momentum equation
simplifies with the only leading term:

@p1�x; y�
@y

� 0 (16)

With the low-magnetic-Reynolds-number assumption, the corre-
spondingmagnetic term is at least one order smaller than the pressure
term. It is obvious fromEq. (16) thatp1�x; y� � p1�x�, which greatly
simplifies the following derivations.

The simplified X momentum equation is the same as that for the
Hartmann flow [29]:

@2u1
@y2
�Ha2u1 ��Ha2K �

�Re

�Ma2
dp1

dx
(17)

But the velocity-slip wall boundary conditions result in different
solutions from the classical Hartmann flow solutions with nonslip
wall boundary conditions. The final U velocity solution is

u1�x; y� � C1

�Re

�M2

dp1

dx
cosh�Hay� � �Re

Ha2�M2

dp1

dx
� K (18)

where

C1 �
1

Ha2C2

� K�M2

C2�Re�dp1=dx�

C2 � cosh

�
Ha

2

�
��uKn�x� sinh

�
Ha

2

�
Ha

Note that Eqs. (17) and (18) are of order one, because the flow
parameters chosen will render these terms to become the same order
as the rest in these equations.

The zero-order solution for theV velocity is obtained from the zero
order of the continuity equation v1 � 0, and the next order can be
obtained from the continuity equation by using the relation �1 � p1:

@�p1�x�u1�x; y��
@x

� @�p1�x�v2�x; y��
@y

� 0

The result is

v2�x; y� � A1 sinh�Hay�
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� A3K
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p1dx
2
� dp1

p1dx
Ky (19)
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where

A1 �
�Re

�M2Ha3 cosh�Ha=2�

A2 ��uHaKno tanh�Ha=2�

A3 �
1

Ha cosh�Ha=2�

The temperature distribution can be obtained by the following
simplified energy equation and the temperature-jump wall boundary
conditions:
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The solution for the temperature field is
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where N8 is determined by the temperature-jump boundary
condition:
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Moreover,
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and N6 � N4–N5. The density distribution is approximated as

��x; y� � p1�x�=�1� �T2�x; y�

It is evident that the density is not constant at any specific stationwith
x� constant.

The pressure distribution is crucial to the whole set of the solution,
because p�x� and its gradients dominate the coefficients for u�x; y�,
v�x; y�, and T�x; y�. Evaluating the V velocity along the upper
channel wall results in the following equation:
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With the boundary conditions p1�0� � P and p1�1� � 1, the
following exact solutions to the nonlinear ordinary differential
equation are obtained:

1) If K � 0 (i.e., in the absence of the electric field effect),

p1�x� �
�D2 �

�������������������������������������������������������������������
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(23)

where D4 �D1�1 � P2� �D2�1 � P�.
2) If K > 0 (i.e., with a uniform electric field),
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�D2

�
ln �D3Kp1�x� � G1�

� �xD3K �G2D3K (24)

The two boundary conditions exactly determine the coefficients G1

and G2 in the preceding solution:

G2 �
2D1

D3K
�
�
2D1G1

D2
3K

2
� D2

D3K

�
ln �D3K � G1� � 1

and

2D1�P� 1� �D3K �
�
2D1G1

D3K
�D2

�
ln
�
D3K � G1

D3KP � G1

�

Solving forG1 requires an iterative method. However, for a given set
of nondimensional numbers, G1 and G2 are completely determined.

The nondimensional mass flow rate through the channel is

Q�x; y� �
Z

1=2

�1=2
��1; y�u1�1; y�dy

�
�

2

Ha3
tanh

Ha

2

�
1 ��uKnoHa tanh

Ha

2

�
�Re

�M2
F

� 2K

Ha
tanh

Ha

2

�
1 ��uKnoHa tanh

Ha

2

�
� K � �Re

Ha2�M2
F

�

(25)

where

F� dp�x�
dx
jx�1

A more detailed format can be obtained with the known exact
pressure solutions.

Some remarks to conclude this section are as follows:
1) Our derivation is based on two specific sets of nondimensional

parameters; in particular, the convection term is omitted. Here,
careful treatment of the parameters is essential. For example, it is
straightforward to see from Eq. (17) that if the Hartmann number is
large, then the U-velocity profile is straight, except inside the
Hartmann layer. However, a large Hartmann number with a nonzero
electric field can lead to large temperature changes; hence, it would
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defy the quasi-isothermal assumption, which is crucial to obtain the
pressure solutions.

2) Note that many other possible asymptotic solutions with
different combinations of nondimensional parameters exist; some
cases can even be supersonic and hypersonic [20]. With an
isothermal assumption, the results are only applicable to long
microchannels or channels; with the quasi-isothermal assumption,
the results can apply to awider range ofmicrochannels or channels of
conventional dimensions. The Joule heating effects can be included,
as long as the temperature change is of the order of �.

3) We want show that our microchannel MGD solutions are
related to that of the classical Hartmann flow as a specific case. To do
so, we will use the nonslip and constant-temperature wall boundary
condition instead of the boundary conditions here [Eqs. (14) and
(15)], whereas taking the limit of � goes to zero.

a) For the pressure distribution, D2 � 0 in Eq. (22) with the
vanishing � limit whereby the two solutions for the pressure
distribution merge into a general solution:

p1�x� �
�D3K �

����������������������������������������������������������������������������
D2

3K
2 � 4D1�D1P

2 �D3KP�D5x�
p

2D1

(26)

where

D5 �D1�1 � P2� �D3K�1 � P�

Thus, Eq. (26) becomes

p�x� � �Q0 �
���������������������
Q1 �Q2x

p

with Q1 >Q2 > 0. Because 0< x < 1, after expanding the term
inside the square root and neglecting the higher orders of x, a linear
pressure distribution for the classical Hartmann flow is recovered.
However, to accurately compute for the flow inside a channel of
finite length, higher-order terms for pressure gradients must be
considered.

b) For U velocity, C2 � cosh�Ha=2� in Eq. (18), in which C1

remains the same. If the higher order of pressure gradient terms is
neglected, with the linear pressure gradient as the classical
Hartmann flow, then the classical Hartmann flow with a constant-
velocity profile at each station is recovered. For microchannel
flows, the nonconstant-velocity profiles are created by two factors:
the velocity-slip wall boundary condition with the Kn�x� factor
and the nonlinear pressure gradient term.

c) For V velocity, A1 and A3 remain the same, but A2 � 0 in
Eq. (19).

d) For the temperature field,

N8 �
Tw � 1

�RePr
� N3

Ha2
cosh

Ha

2
� N5

4Ha2
coshHa � N6

8

in Eq. (21), in which other constants remain the same.

V. Numerical Validations

To validate the preceding analytical results, we perform
numerical computations to solve the low-magnetic-Reynolds-
number MGD equations, and we compare the results with the
corresponding analytical results. The computations are performed
with a well-tested general Navier–Stokes equation solver;
specifically, we apply this Navier–Stokes equation solver to the
formulation of Eqs. (1–7). The Navier–Stokes equation solver uses
the classical Roe scheme to compute inviscid fluxes and a central
difference scheme to compute viscous fluxes. The solver adopts the
minmod function to reconstruct the gradient properties. The flow
parameters are �� 0:06, L� 20 �m, p1 � 2 atm, p2 � 1 atm,
T1 � 300 K, �u � �T � 0:85, oxygen gas, � � 1:4, Pr� 0:72,
�� 1:919 	 10�5 s 
 N=m2, wall temperature Tw � 300 K,
Rb � 1=�, and R� � �. When the magnetic field is enabled, K is
chosen to be 0.0, 0.5, or 0.9. Many of these simulation parameters

are the same as those in our previous paper [20] on a neutral-gas-
flow case.

The first set of results, Figs. 2–6, correspond to a case with
K � 0:5, the so-called impedance match case for Hartmann flow
[32]. This set of results contains both electric and magnetic field
effects. We use this case to validate the general solutions for the flow
and temperature fields.

Figure 2 shows the pressure contours, and the contours are
generally straight and the comparisons are good. Figures 3 and 4
show comparisons of U- and V-velocity results, in which in the
former the velocity-slip effects are very evident along the wall and
the latter shows some discrepancies at the outlet boundary. Overall,
the velocity field solutions agree well. Figure 5 shows the density
contours, which are slightly curved. The analytical results are
obtained from

��x; y� � p�x�=�1� �T2�x; y��

The quasi-isothermal assumption permits curved analytical density
contours, as expected. The numerical-vs-analytical discrepancy is
caused by the error from pressure and temperature passing to the
density results. Figure 6 shows comparisons of numerical and
analytical temperature results. In general, the temperature fields have
the same trends, but discrepancies are found to be larger thanwith the
U- and V- velocity fields. Some explanations accounting for the
discrepancies will be discussed later.

The second set of comparisons presented in Figs. 7–12 is based on
four different cases: 1) no magnetic and electric fields, 2) magnetic
field only with K � 0, 3) magnetic and electric fields with K � 0:5,
and 4) magnetic and electric fields withK � 0:9. We intend to show
some trends by comparing the results from these four cases. The first
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case is governed by the classical Navier–Stokes equations, and there
are previous analytical solutions available [5,20]. The second case
contains an extra term contributed by the magnetic field to the X
momentum equation, but not to the energy equation. The third case
contains both electric and magnetic fields. The last case contains
stronger electric andmagneticfield effects. The electric andmagnetic
fields have strong impacts on the temperature results. For each case,
the electric field is constant through the whole flowfield. The
magnetic field effects are not constant with uB0 in the source terms,
because B0 is constant, but u1 is not uniform throughout the field.

Hence, the nonuniform strength of sources terms is added to the X
momentum and the energy equations for the last two cases. Thus,
four sets of combinations can offer some physical insights into the
different contributions from the magnetic and electric fields.

Figure 7 shows the pressure distributions along the flow direction,
with the linear pressure distributions subtracted. The lines without
solid symbols are analytical results, whereas the line with solid
symbols represents the numerical simulation results for the last case.
Numerical solutions are obtained for all cases; here, we merely
present one case of K � 0:9, for clarity. It is clear that the linear
pressure gradient assumed in the Hartmann flow is not applicable
here and itmay result in inaccuracies if used carelessly. For these four
test cases, at any specific station, pressure level increases from case 1
to case 4, indicating that the extra magnetic field or electric field
results in increasingly stronger impedance to the flowfield. For
cases 3 and 4, the numerical and analytical results are essentially the
same, whereas for the last two cases, the nonlinearities becomemore
appreciable. Larger discrepancies are found for cases 3 and 4
between numerical simulations and analytical results than for cases 1
and 2.

Figure 8 shows the different U-velocity profiles for the four test
cases at the middle station of the channel, x=L� 0:5. It shows that
the electric and magnetic fields have a strong influence on the
velocity profiles. Figure 9 shows the different V-velocity profiles for
the four test cases at the middle section of the channel. It is very
obvious that the V velocities are much smaller than theU velocities.
Only the upper half of resultswith a positiveV velocity are presented,
for a better illustration; the other half of the results have negative
values and are antisymmetric to the upper part. Again, for all the
cases, the numerical and analytical results are close. For clarity, only
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the numerical results of case 4 are shown. Figure 10 shows the
profiles of velocity slips along the upper walls for these four test
cases. In general, the slip velocities increase as gas flows
downstream, and the numerical results are found to agree with the
analytical results. Essentially, for the last two cases, the gas flows are
both Fanno and Rayleigh flows, due to the wall friction and Joule
heating effects. Hence, with stronger Joule heating effects in case 4,
the subsonic flow increases its speed more significantly toward the
sonic speed than that of case 3 [35].

Now some words are in order concerning the discrepancies found
on the results:

1) The numerical simulation results are from the whole MGD
equations, whereas the analytical solutions are based on the
asymptotic equations. If we consider the truncation errorO��� as an
upper limit, then there is about a 6% theoretical difference with
�� 0:06.

2) The analytical results are actually based on the assumption that
the channel is in the middle of the flowfield without entrance effects;
however, for numerical solutions, the entrance effects are not
avoidable, due to the presence of significant friction occurring at the
inlet region. The uniform freestream needs to adjust to the channel
flow around the inlet entrance. The inlet and outlet boundary
condition treatments are very subtle, and the outlet boundary
condition treatment is also important because the gradients there are
large. However, these end boundary effects are not included in the
asymptotic solutions at all. Significant discrepancies therefore show
up in the V velocity and temperature profiles.

3) Between the analytical and numerical solutions, the pressure
fields already have some discrepancies, and with the small length
dimension, dp=dx and dp2=dx2 must be huge quantities. For the
temperature field, the dp=dx term dominates in the coefficients, and

�dp=dx�2 appears in the coefficients N5 and N6. Hence, it is not
surprising to see that the temperature profiles have poorer agreement
than the velocity and pressure results.

4) Analytically, we only consider the leading term for the electric
andmagneticfield effects, and because they are coupled in the source
terms for the momentum and energy equations, some nonlinear
effects are possible.

Finally, Figs. 11 and 12 show the temperature profiles and the
temperature gradients along the upper wall boundary. As discussed
earlier, it is very difficult to obtain accurate temperature profiles,
especially when both electric and magnetic fields are considered.
Hence, these plots only show the analytical results. For cases K �
0:5 and 0.9, there are Joule heating effects in the energy equation. For
K � 0:9, stronger Joule heating deposits more energy into the field,
resulting in a much higher increase in the averaged temperature. As
shown in Fig. 11, a portion of gas close to the wall is actually hotter
than the wall. Correspondingly, for the last case, heat flux is
transferred into the wall instead from the wall, as shown by Fig. 12.
There, it also indicates one important effect associated with anMGD
gas flow inside a microchannel: along the wall, even when the
temperature change is very small, the normal temperature gradient
can be huge because of the narrow-channel height [20]. Hence, this
shows that the heat transfer problem in microchannels is of practical
importance. For case 1 (K � 0) without any electric and magnetic
field effects, the temperature gradient reaches an order of
1 	 106 K=m. By contrast, with magnetic and electric field effects
(K � 0:9), the magnitude of temperature gradient becomes much
larger and variant, as shown in Fig. 12.
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VI. Conclusions

We have reported an analysis of rarefied MGD gas flows inside a
two-dimensional microchannel with velocity-slip and temperature-
jump boundary conditions and with the assumptions that the
magnetic Reynolds number is low and the flow is quasi-isothermal.
By carefully comparing different orders of magnitude for the
pressure drop, viscous shear stress at the channel wall, and the
magnetic forces, two sets of parameters are selected and used to
simplify the MGD equations. This study yields asymptotic solutions
for velocity components, pressure, and temperature, which revert to
the Hartmann flow solution under specific conditions. With stronger
Joule heating effects, the Rayleigh effects become significant, and
the average pressure, velocity, and temperature inside the channel
increase. In general, the pressure gradient along the flow direction is
nonlinear inside the channel, and the velocity and density
distributions are nonuniform. Numerical solutions of the same
formulation are obtained to validate these asymptotic solutions;
explanations are provided for the discrepancies found between these
two solutions.
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